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2.

SUMMARY

An important impact on the monitoring of a CTBT has recently been made

by a renewed discussion of the decoupling problem. Specifically, since the

decoupling of an underground explosion of low yield by detonation in a cavity

is less efficient at high frequencies, the evasion of a CTBT through decoupling

becomes increasingly difficult for a test site monitored by seismic stations

recording frequencies greater than 10 Hz over high Q paths. Of particular

importance then to CTBT monitoring will be the understanding of the relative

importance of scattering versus intrinsic anelasticity to the attenuation

in the crust and lithosphere, and the factors that are important to their

regional variation. These problems are treated in this semi-annual report by

comparing the predictions of multiple scattering theory with observations of

S codas recorded from earthquakes in the Hindu Kush region by a local digital

array. The complete study is contained in the Ph.D. thesis of Ru-Shan Wu,

performed under the supervision of Profs. Aki and Toks8z. The work included "." -"

in this report has been edited from that thesis.

The study has examined the attenuation of local/regional S codas from

0.25 Hz to 40 Hz in the Hindu Kush region. A goal of the study was to

separate the relative contribution of scattering versus intrinsic anelasticity

to the attenuation of coda waves. Coda attenuation has been analyzed in the

frequency domain using a radiative transfer equation technique, which

includes multiple scattering, and in the time domain using weak and strong

scattering approximations. The frequency band less than 1 Hz appears to be

dominated by strong, multiple scattering and wave interference that cannot be

treated using the radiative transfer equation technique in the frequency domain.

- 2.
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3.

This band may be dominated by scattering of surface and guided mode energy

and multiple conversions of body wave energy to surface wave energy and

vice versa by boundary topography and elastic heterogeneity. In the band

1.5 to 20 Hz intrinsic attenuation dominates scattering attenuation. The

Hindu Kush data indicate that this intrinsic attenuation is frequency

dependent in the 1.5 to 20 Hz band. The physical mechanism of this intrinsic

attenuation is unknown. In the band above 20 Hz, regional phase onsets

cannot be easily distinguished and scattering attenuation is best

described by diffusion theory. Although coda Q's appear to be similar in

tectonic regions, the type of analysis described in this report should be

applied to many different regions before general conclusions can be made

about the relative importance of scattering and intrinsic attenuation in

different frequency bands.

. . .
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Abs tract

In order to separate the scattering effect from the intrinsic

attenuation, we need a multiple scattering model for the seismic wave

propagation in random heterogeneous media. In this paper, we apply the

radiative transfer theory to seismic wave propagation and formulate in

frequency domain the energy density distribution in space for a point source. -

We consider the cases of isotropic scattering and strong forward scattering.

Some numerical examples are shown. It is seen that the energy density -

distance curves have quite different shapes depending on the values of medium

seismic albedo Bo - s/(YI,+qa), where Ts is scattering coefficient and a"

is the absorption coefficient of the medium. For high albedo (B>0.5) medium,

the energy-distance curve is of arch shape and the position of the peak is a

function of extinction coefficient of the medium 1e qs + qa" Therefore we

can separate the scattering and the absorption based on the measured energy

density distribution curves.

We also discuss the approximate solutions in time domain: the single

scattering approximation and the diffusion approximation. We apply the

* formulas of diffusion approximation for an arbitrary non-isotropic scattering

function to the coda envelope and discuss its relation with the frequency

domain solution.

The data from the digital recordings In Hindu Kush region are used as an

example of application of the theory. From the derived energy density

distribution curves and the discussion on the envelope shapes of the digitally

filtered seismograms, we conclude that, In the frequency range 1.5 Hz to 20

Us, scattering is notthe dominant factor in the measured apparent

attenuations, i.e. Bo 4 0.5 in the Hindu Kush region for this frequency range.

Due to the insensitivity of the shape of the energy-distance curve for the

case Bo ( 0.5 and the fluctuations of the data, we are not able to obtain the

0" % •.
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precise B values. Some interesting phenomena at low frequencies (<1.5 hz)
0

and high frequencies (>20 Hz) need to be studied further. The results obtained

in this paper imply a frequency dependent Q

0
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Multiple Scattering and Energy Transfer of Seismic Waves

and Application of the Theory to Hindu Kush Region

1. INTRODUCTION

Are the measured apparent attenuations for short period seismic waves

caused by anelastLcLty of the media or by scattering of the heterogeneities in

the media? Is the single backscatterLng model a good approximation to the

coda envelope decay or do we need a multiple scattering model which will have

significant differences in describing the coda behavior from the single

backscattering theory? These are long-standing problems. In order to answer

these questions, we need to develop certain multiple scattering model for

seismic waves and compare the predictions from it with those obtained from the

single scattering theory. O'Doherty and Anstey (1971) derived a

one-dimensional multiple scattering formulae for a stack of thin layers as

IT(w)I - e-R(w)t (1.1)

where w is the angular frequency of the wave, t N is the travel time of

passing through the stack, r is the travel time for each layer and N is the

number of the layers; T(w) is the transmission response and R(w) is the power

spectrum of the reflection coefficient series normalized by the travel time.

The exponential form of (1.1) itself exhibits the indiscriminability of the

multiple scattering effect from the intrinsic absorption, if we observe only

the decay of the transmitted waves. Richards and Menke (1983) did some

numerical experiments on this model and discussed some possibilities of using

the relation between amplitude spectra and phase spectra, the frequency
A

contents of the coda and that of the main arrival etc. to distinguish the

multiple scattering effects of thin layers from the intrinsic attenuation. We

note that the formulation of the problem by O'Doherty and Anstey is

essentially that of the random slab problem (see Kay and Silverman 1958,

Hoffman 1964). The results are presented as the relations of transmitted or

.- o . -U • .- .. . o o. oO -°' o,,. . o, .X . '•- _ -, ,,_,, , . ., ,_,_, ,= ,_,- . , ..*.. , .- ..._. .* -*.\..,, ...,.. .. . .'._.- _ *.' . . * -' . . ... ,.... . .. - . . .-,. .
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reflected waves with the slab thickness, which do not necessarily represent

the amplitude attenuation with distance or the envelope decay with time of

seismic waves.

Kopnichev (1977) formulated the double and triple scattering for 2-D and

3-D media in the case of isotropic scattering. Gao at al. (1983, 1984)
S

derived up to seventh order scattering and then obtained the approximate

formulas of multiple scattering in time domain for 2-D and 3-D media using

curve-fitting technique. However, the formulas derived are for the case in

which the source and sensor are located in the same point. On the other hand,

the most prominent evidences of multiple scattering would be manifested if the

sensor could be situated at some place between the source and the point apart
S

from the source by one man-free-path of scattering (this will be shown

later). Therefore it ay be difficult to use these formulas for

discriminating the scattering attenuation from the intrinsic attenuation,

though the formulation may be very useful in other calculations.

In this paper, we derive the formulation of seismic energy

transfer under multiple scattering by using the radiative transfer equation

technique developed in the astrophysical optics and the neutron transport

theory and explore the possibilities of using this approach to separate the

scattering and intrinsic attenuation.

Historically, multiple scattering theory has been developed along two

independent approaches: the analytic theory and the transport theory (for

review see Ishimaru 1977). Both are based on the statistical treatment of

wave propagation in random media. Because the complex heterogeneities are

modeled with a random medium, the wavefields propagating therein are also

random wavefields. We are interested only in some statistical quantities of

the wavefield, such as the mean intensity, phase and amplitude fluctuations,

.L .
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various correlation functions, pulse spreading, angular broadening, etc. All

of these quantities can be obtained from the moments of the random field. The

analytic theory starts with basic differential equations such as wave

equations and, by introducing the scattering and absorption characteristics of

the random heterogeneities, derives the differential or integro-differential'

equations for the moments of the wavefields. There are basically two branches

in the analytic theory: the renormalization method and the small-angle

approximation method. In the first branch the renormalization procedure was

used for the formal perturbation series and the exact equation for the first

moment (the mean field), known as the Dyson equation, and for the second

moment (the correlation function), the Bethe-Salpeter equations were derived.

These equations are exact in the sense that the multiple scattering of all

orders, as well as the diffraction and interference effect are all included in

the equations. However, since the operator involved in these equations are in

the form of infinite series, there is no solution available at present.

Approximations have to be made to the operator before some practical solutions

can be obtained. The most widely used approximation is the first order

smoothing approximation ai called by Frisch (1968) (see also tshimaru 1978, v.

2), in which the local Born approximation of the fluctuating field (or

equivalently the Bilocal approximation to the mean field) is applied to the

Dyson equation and the ladder approximation is applied to the Bethe-Salpeter

equation. These approximations can be obtained by either the Feynman diagram

Smethod or the Bogoliubov smoothing method in the operator form (Frish 1968,

Tatarskii 1971, Ishimaru 1978; for the various names of the first order

smoothing approximation, see also Wu 1982b, footnote 2). The Justification

for the use of this approximation has been clarified by Frisch (1968) by

introducing the generalized Reynolds number. The basic physical condition for

0 ",_.- ...*. ,. .....- .- *,. - -. -. -.- ..- . - - .- - .. . .*. -. -. - .- - . . ,
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the valid use of the approximation is the scattered field within a correlation

length being weak compared with the incident field. In the case of large

scale inhomogeneities, Fante (1982) has shown that a sufficient condition for

applying the ladder approximation is the mean free path for multiple

scattering being large in comparison with the correlation length of the

medium. This condition is usually satisfied in the context of seismic wave

scattering in the lithosphere. The first order smoothing approximation to the

Dyson equation and Bethe-Salpeter equation can be shown (Frisch 1968) to be

equivalent to the Fold-o-Twersky system of equations, which have been developed

independently for discrete random media, i.e. the media with randomly

distributed scatterers. There are still no general solutions for these

equations and further approximations are needed to put them into practi .a

use. For small size inhomogeneities, there are some general solutions for cne

mean field, but nb useful results for the second moments (Tatarski 1971, §61,

Ishimaru 1978, ch. 14). It has been shown that the first order smoothing

approximation of the Dyson and Bethe-Sapeter equations can lead to a radiative

transfer equation for the specific intensity which is the 3D spatial Fourier

transform of the spatial correlation function of the wavefield when the

correlation function is a slowly varying function in space (Barabanenkov 1969,

1971, Tatarskii 1971, §63, Ishimaru 1975, 1978). Similarly, a generalized

radiative transfer equation can be derived for the frequency correlation

function (Ishimaru 1978). Thereby the link l has been established between

the analytic theory and the transport theory.

The second branch of the analytic theory includes all the small-angle-

scattering methods. Because of the small scattering angle approximation or

forward-scattering approximation, the basic starting point of the method is

the parabolic wave equation. There are two approaches: parabolic equation

.-..
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approach and Feynman path integral approach. Tatarskii applies the Markov

approximation to the parabolic wave equation, so the theory of Markov process

can be used to the study of the problem (Tatarskii 1971). Uscinski, on the

other hand, uses the plane wave decomposition and phase-screen technique to

the parabolic wave equation (Uscinski 1977). At present, the parabolic

equation methods can have only approximate solutions for up to the fourth

moment equations. The path-integral approach starts with the Feyuman

path-integral representation of the parabolic wave equation and makes use of

the small scattering-angle approximation and Markov approximation (Dashen

1977, Platte et al., 1979). It can obtain solutions for any higher order

moments for the Gaussian statistics. Flatte et al. have applied this approach

to the ocean acoustics and obtained the expressions for phase and intensity

fluctuations, various correlations and pulse wandering and spreading etc.

The transport theory (or radiative transfer theory) is a phenomenological

approach. It does not start with the wave equation, but deals directly with

the energy transport process. Therefore, only energy or intensity arithmetic

appears in the theory and no wave interference is considered. This treatment

much simplifies the mathematics. Historically it appeared earlier than the

analytic theory, and has its root from Boltzmann's equations in the kinetic

theory of gases and in the neutron transport theory. It was introduced into

astrophysical optics by Schuster (1905), Chandrasekhar (1950) and others and

is now widely used in the multiple scattering treatment in the astrophysical

optics, ocean acoustics, neutron transport theory, electromagnetic wave remote

sensing, marine biology, etc. (Chandrasekhar 1950, Sobolev 1963, Menzel 1966,

Davison 1958, Bell and Glasstone 1970, Flatte 1979, Kong et al. 1984,

Jerlov 1976). This approach also has its shortcomings. It can only deal with

the second moments, it does not account for the diffraction and interference

* * - - * . -. * -
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phenomena. However, there are some new developments recently, which

incorporate some wave interference effects into the radiative transfer

equation. For example, in deriving the transfer equations from the

Bethe-Salpeter equation, beside the ladder terms (which alone will lead to the

regular intensity transfer equation), the cyclical diagrams are also included,

resulting in a modified radiative transfer equation, which can account for the

backacattering enhancement due to the constructive interference effect caused

by the double passage of the backscattered waves (Zuniga et al. 1980).

So-called "wave radiative transfer theory" based on the second order

approximations to the Bethe-Salpeter equation is also under development (Tsang

and Ishimaru 1983).

For the coda envelopes or coda energy problems of local earthquakes, it

is apparently a wide-angle scattering problem, so that the transport theory is

probably the most effective method to treat it at present. In this paper we

use the frequency domain formulation mainly from the neutron transport theory

and the electromagnetic wave propagation (Davison 1958, Liu and Ishimaru 1974,

Fante 1973, Ishimaru 1978) to the energy density decay with distance of the

- seismic waves from local earthquakes, and discuss the possibility of using the

decay curves to evaluate the relative strengths of the intrinsic absorption

and the scattering coefficient of the medium in the region studied. Some

examples are given for the Hindu-Kush region. The results and their

geophysical meaning are also discussed.

2. DEFINITIONS AND NOTATIONS

It is difficult to keep all the notations and terminology in radiative

- transfer theory without causing ambiguities and contradictions with the

traditional notation and terminology in seismology, when the theory is

introduced into seismology. I will basically follow Ishimaru (1978) and make

some necessary changes to keep the notations self-consistent.

.-- -'.
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I(rQ): Specific Intensity or directional intensity. It is the most

fundamental quantity In transport theory. It gives the power flowing'

within a unit solid angle in the direction 0, here 0 is the unit vector,

emanated from a unti area perpendicular to 0, in a unit frequency band.

The specific intensity is defined for a frequency w, which is omitted in

the notation.

In this paper we consider the S wave and Its coda for small local

earthquakes. Since the P wave energy is much smaller than the S wave

energy for a double-couple point source which is the source model for

small earthquakes, we consider here I(r,0) as only the S wave energy by

neglecting the mode converted energy from P waves. We assume here also

that the wave energy described by I(r,Q) is depolarized, I.e. the

energy is equally partitioned between the two orthogonal components of S

waves. This agrees generally with the observations. Because of the free

surface reflection and the scattering by heterogeneities, the S waves

from a double-couple source get quickly depolarized. From the results of

this paper, the energy density decay curves for the two orthogonal

components are very similar to each other, which further validate the

assumptions.

In order to measure the specific Intensity (or directional intensity),

we need strongly directional sensors, which are not available In the

seismological practice. Therefore the specific Intensity is not the

quantity measured in practice, but is the Important concept and quantity

for theoretical derivations.

"f(r)" Average intensity, defined by

!(r) - I(r d(2.1)

is the intensity at point r averaged over all directions.

:.-; ,':-' , ;-',-' ,...:'.-:," "" "" "- " " " "-+/,.-i."-.". :-':-.:'. -.......'-.. .... ,.'. .'..... .... . ... .,- .-...-.-... .- ....-. ",..
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E(r): Enerzy density, defined by

E(r) f V - - 1(r) (2.2)

where C is the wave velocity.

J(r): Flux density vector, defined by

J(r) = f I(r,Q)QdQ . (2.3)
4%

a a

The net flux density in a particular direction go is defined as Qo.J(r).

It is the net power transferred along the Qo direction across a unit

area perpendicular to 0o" In this paper, we also use the notation for the

energy flux density, i.e. the power flux density divided by the wave

velocity c.

S(0,00 ): Scattering intensity function of a random medium, which is related

to the single scattering amplitude f(Q,0 o ) of an elementary volume dV of

the Lnhomogeneous medium by~<jf(ggo) 12>

s(Q' ) " dV ' (2.4)

where < > denotes taking ensemble average. S(Q,Q0 ) gives the scattered
* . A

power in 0 direction within a unit solid angle by a unit volume of the

random medium for a unit flux density of incident wave in go direction.

In this paper we will give a unified treatment for both the discrete

and the continuous random media. For a discrete random medium composed

of randomly distributed scatterers, S(QQo) is defined by the scattering

characteristics of individual scatterers; while in the case of random

continua, we can choose the volume elements small enough so that we can

derive the single scattering amplitude f(9,0) by the Born approximation.

4:" ::
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g(Q,00 ): Directional scattering coefficient, defined by
A A *

g(9,9 0 ) - 4%ES(0,0 0 ) • (2.5)

for the definition and the derivation for elastic random media, see

paper II (Wu and Aki, 1984b).

q.-Mg: Scattering coefficient of the medium defined by

713 f S(Q,0 0 )dQ - ~f g(04,io)dL 0 (2.6)

which gives the total power loss due to scattering by a unit volume

random medium per unit flux density of incident wave under the single

scattering assumption.

*Ma-b* Absorption coefficient of the medium, which gives the power loss due

absorption by a unit volume random medium per unit flux density of

incident wave.

re: Extinction coefficient of the medium, defined by -

..Me"Ma hls (2.7)

1 0!a: Correlation length of the random medium.

* Le - l/ue: Extinction length of the medium.

La - I/Ma: Absorption lenith of the medium. (2.8)

Ls  1 /71s: Scattering length or scattering mean free path of the medium.

Da: Numerical extinction distance, which is called "optical distance" in optics.

Da: Numerical absorption distance,

. Ds: Numerical scattering distance, defined by

De - r/Le,

Da - r/La, (2.9)

where r is the travel distance.

*. . ,.. . . . . . . . . .*

. .. * . . .
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BO: Medium seismic albedo, defined by

B -- - (2.10)
0 e 'is+'ia

D(0,9,): Scattering directivity, defined by

AA g(9,00) 4%S(9,90)

- ~ 1 s - 'is(2.11)

It is the aormalized directional scattering coefficient, and satisfies

4%f D(9,00) 1, (212
4%

that mans its average over all the directions is equal to unit. In

the case of isotropic scattering

D(, I B . (2.13)

Its relation with the "phase function" in the radiative transfer theory

(Chandrasekhar 1950-, Ishinara 1978) is
* A A A

D(9,90) -Bap(Q,Q 0 ) .(2.14)

P(0,90): Phase function (see 2.14).

In the case of a discrete random medium having statistically uniformly

distributed random 3Catterers with number density n, we have

a d(12,0o): Differential (or directional) scattering cross-section of the

scatterers.
A AA A

S62,0 0 ) -nCd(Q,Qo)- (2.15)

* a.: Scattering cross-section of the scatterers, defined by

Os f OUj(Q,Qo)dQ (2.16)
4%

a: Absorption cross-section of the scatterers.

* at-sagca Total cross-section of the scatterers.
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Tlh: Absorption coefficient of the host. mdium.

"g - nas, (2.L6)

,a - "a'1h, (2.17)".% ~A A ..

A 4% d(Q,2o)
D(0, 0 ) (2.18)

B: Scatterer albedo, defined by

"'.: B1 a s a n
B= r-arn- 7 . (2.19)

Therefore,

Sno 8 ns
Bo --. (2.20)

0 s-+a flys+nlalh not"-h

When 1h<<not, we have

as I1h T}h  21-
Bo - (1- - Bl(l- -) (2.21)

For a perfect scattering medium Bo - 1.

4..

.°4.
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3. ENERGY DENSITY DISTRIBUTION IN THE CASE OF ISOTROPIC SCATTERING

Knowing the extinction coefficient and scattering coefficient of the

medium ie, qs and the scattering directivity D(Q,Q0 ) or the scattering

intensity function of the medium S(Q,0) defined by (2.6), (2.7), (2.11) and

(2.4), we can obtain the differential equation for the specific intensity

I(,Q), the "equation of transfer" (Chandrasekhar 1950, I, Ishimara 1978, ch.

7):

d(,) -+ S(Q,Qo)I(r,Qo)dQo +

aa

,,, oe(r,Q) +- fn D(Q,( o)I(r,Qo)dQo+lW(r,( ) , (3.1L)..-' " "

where V(r,Q) is the source intensity function, which defines the amount of

power emitted from the sources into the direction 0 per unit solid angle. In

(3.1), d1 is the iength of a cylindrical elementary volume of unit cross

section in the medium with the axis of the cylinder in 0 direction (Fig. 3.1).

Therefore the left hand side of (3.1) represents the total change of the

specific intensity for a unit travel distance. The first term in right hand

side of (3.1) is the loss'of power in 0 direction due to absorption and

scattering, whereas the second term gives the gain of power in that direction

from the scattered waves for the incident intensity from all directions and

the third term is the energy supply from the sources. No general analytic

solutions are available for (3.1). Some methods such as the Gauss-quadrature

can be used to obtain the numerical solutions for a general scattering

function. Let us first consider the simplest case of isotropic scattering.

In this case the scattering directivity D(,0o)-il. Integrating (3.1) over all

directions 0, we obtain equation for the average intensity T(r) or the

p p .~.* ~ %4.%~ .* -!
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energy density E(r) (2.2)

dE(r) 1A S

dI - xEr+ ~ f l.(r,Qo)dQ0 + W(r,Q)]dQ -

- 4% 4s

--IiE(r) + Q(A), (3.2)

where C is the wave velocity. (3.2) is in a form of first order differential

equation, in which the second term in RIIS is the source term

Q(A) - f 1,f I(r,Qo)dQo + w(r,O)IdO (3.3)

The general solution for (3.2) is

1(r) -n + f Q(1 )e-ne(I±Il)d~J , (3.4)
0

where A is a constant.

The energy density (3.4) is composed of two terms. The first term is a

simple exponential decay with the extinction coefficient Ti as its attenuation

coefficient; this is the coherent energy density Bc or "reduced energy

density" (Ishimaru 1978). The second term is therefore the diffuse energy

density Ed which is produced by scattering. Applying the initial condition

1(r0 ) - Ein- (3.5)

where Emn is the incident energy, we get

1(r) -Ec(r) + Ed(r)

Ec(r) -Emn Selb

2Edr LO f Q(11)e-le(I-11) dA1
0

f-f IrI [ ~ dI + W(r,Q)]elbe(I-Il)dQd~l . (3.8)
0 4x 4%c
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In order to calculate the diffuse term (3.8), we need to know the intensity

IUrlQ.) which is %slated to the total energy density. Therefore (3.8) is in

the form of integral equation. To carry out the integration with respect to

wev note that, the intensity gain in the direction Q^ within dO are

contributed from the intensity of all the volume elements dVl at within the

elementary solid angle, and

2

Therefore (3.8) becomes

41c -l-l
Ed(r) f J' [isE(rl)4t;- H(rl,Q)J dV1  (3.10)

The integration is over the volume of the random medium. The integral

equation for the total energy density becomes (see also Ishimaru, 1978, ch.

12).

E(r) Binel17*1 + f UE(rj)+c(rl,Q)lGo(r-r)dVL (3.11.)
V - --

where
V r~^ (3.12)

is the source energy density function, and

G0(r-rl) - C(3.13)

4W 4,x Ir-r112

Integral equation (3.11) can also be derived from the first order

smoothing approximation of the Dyson and Bethe-Salpeter equations (Lin and

Ishimaru 1974).

From (3.11), the energy density E(r) is totally defined by the incident

field, the source-function, and the volume of the random medium. For the

problems of seismic coda waves of local earthquakes, the distances between the

stations and the sources are short compared to the travel time of coda waves.
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As the first approximation, we consider the problem of a point source located

in an infinite randomly inhomogeneous medium. The effect of the free surface

is like a mirror reflecting the half random space to a whole random space with

the upper half space being the mirror image of the lower half space. The

limited thickness of the lithosphere, which is supposed to be more

heterogeneous than the asthenosphere beneath will have influence on the coda

of later part. Further discussion about the limitation of the model will be

given later in this paper.

In (3.11), suppose the incident field Ein - 0 and the point source is

located at r- 0, radiating the total power Po. Then

Po
c(r) - 6(r) - Eo6(r) (3.14)

The equation (3.11) becomes

,e I.arl I
E(r) - e-r + f E(rl) , I dV..
- - Iz-1 12

= 1o Go(r) +f nsE(r)o(_-l.)dVl . (3.15)

V

This is a Faltung type or -convolution type integral equation

(TrLcomi 1957, Carrier et al. 1966), Fourier transform method can be used for

solution. Assuming E - 1, the solution can be written as (see

Davison 1958, Lin and IshLmaru 1974, Ishimaru 1978 (12-21))

'ePd )e-
E(r) - - exp(-qedor) + f f(sB°)exp('T*rs)ds

Ed(r) + Ec(r), (3.16)

.~~~~~ . .. " ..
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where
2 2

2 d 0 (l-d 0)
Pd ", 2 , (3.17)

BO(d 20+Bo- 1)

and do is the diffuse multiplier determined by

Bo 1+do
- 'n (1-d-) m 1; (3.18)

and

f(s,B o ) M {[l- - tanh'l( 2 )0 ( ) . (3.19)

The first term in (3.16) is the diffuse term Ed, which is attributed to the

pole residue in the complex spatial frequency plane, and the second term,

coherent term Ec is from the branch cut integration.

Fig. 3.2 shows the relation between the diffuse multiplier do and the
I

medium albedo Bo .  d o is always less than 1. When distance r is large,

especially for large Bo, the diffuse term becomes dominant (see also Fig. 9),

and E(r) will be ipproximately an exponential decay with an apparent

attenuation coefficient doqe, which is less than the extinction coefficient

iqe. The degree of reduction depends on the albedo Bo . The diffuse term can

also be written as

T1ePd
Ed(r) = exp['a+dsyls ) r , .

do-(l-Bo)
d o Bo (3.20)

ds is a multiplier and d035 gives the effective contributions of the

scattering coefficient to the apparent attenuations. d3 is also plotted in

Fig. 2. Table I lists some values of do and da versus Bo .

..........................
................. . . ... ..... ....

... *.. .



23.

The coherent term can also be written as

71e T ier d"
Ec(r) - 4 fo f(FB°)exp(---) - (3.21)

by setting C - 1/s for the convenience of computation. Fig. 3.3 shows the

behavior of the two factors of the integrand for different numerical

extinction distances D. - Tier and different medium albedo Bo . exp(-De/C)/C2

has a sharp peak for small De when C is small; whereas f(C,B o ) is nearly

singular for small Bo when C 's close to 1. Therefore, in doing numerical

integration, we used Romberger integration method for three separate segments

to take care of the abrupt changes of the integrand at both ends of the

interval. The Gauss-Legendre quadrature is also used to check the results.

It turned out that the Gauss-Legendre quadrature of order 10 gives fairly good

results.

In the following we will show some numerical results of the energy

density distribution along the travel path from the source point. In the case

of homogeneous media, the decay of energy density with distance is only due to

geometric spreading. For a isotropic point source, the decay is 1/4%r 2 .

Therefore, we normalize the distribution for inhomogeneous media (3.16) by the

homogeneous distribution, i.e. multiply both sides of (3.16) with 4r 2,

1 Ter d '

En(r) - 4%r2 E(r) = uePdr exp(-,nedor)+rerff(C,Bo)exp(- )d

10

DePdexp(-doDe)+De f f(C,Bo)exp(-De/C)=- , (3.22)
0 

-c2".....".
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where En(r) stands for the normalized energy density distribution. Fig. 3.4

gives the results for different medium albedo Bo . The diffuse term and the

coherent term are also plotted in the figure for comparison. The coherent

term has little changes for different Bo , whereas the diffuse term varies

dramatically with Bo, especially when Bo>0.5, i.e. when scattering is

dominant. This gives the possibility of using the energy density decay curves

to calculate the extinction coefficient i1 e and the medium albedo Bo, hence to

separate the absorption coefficient r a and the scattering coefficient n.. In

the case of BO>0.5, the diffuse term is dominant. There will be a peak on the

E(r) curve, the position of the peak will depend on re and B. of the medium.

When BO<0.5, the coherent term is dominant for De<2. Therefore the shape of

the curve is not very sensitive to the change of Bo, so that the separation of

scattering from absorption becomes difficult.

By assuming i point source with Eowl, we get E(r) around the peak with

values greater than 1, that need some explanation. As shown in Fig. 3.5, the

normalized energy density En(r) - 4nr2E(r) represents the energy received by

the ring shell (hatched). In a homogeneous medium, if there is no absorption,

the energy received will be equal to the scurce energy. In a scattering

medium, the wave energy can go outward and inward across the shell. We denote

the outward energy flux by Fr+ and the inward energy flux by Fr-. In the

figure, we sketched one possible path of multiple scattering. No matter how

complicated the path is and how long the time delay is compared to the direct

path, the closed ring shell will eventually receive all the energy emitted by

the source. There is no escape! Therefore, in this case the Fr+ is equal to

the total energy. However, the shell will also receive the inward scattered

energy, so the total received energy Fr++Fr'is greater than E0 . Of course the

net energy flux Fr+-Fr'iS always less than Eo . If there exists absorption,

,'%o% " -. • -.- . . -. , * . - - , .- . * . . . . . . . . . . . . . . . .
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the amount of received energy will depend on the energy balance between the

absorption loss and the inward-scattering gain. Near the source, r is small,

the ring shell has a small surface area for receiving the inward-scattered

energy, so En(r) u Eo. When r increases, the surface area of the shell also

increases, so that more inward-scattered energy can be received, resulting in

the growth of En(r). However, the absorption loss also grows with r due to

the increase of the path length. Upon to some distance r, the growth rate of

* gain is equal to the growth rate of loss, the curve reaches its maximum.

Beyond this distance, the absorption loss prevails.

Fig. 3.6 replots the curves of Fig. 4 in a semi-logarithm coordinate

system. Fig. 7 and 8 plot some En(r) curves for cases of constant absorption

and constant scattering respectively. In this paper b=r g:-ns. Fig. 3.7

shows the influence of different scattering coefficients on the energy density

distribution curve of a constant absorption medium. The distance is

normalized by the absorption length of the medium La - l/na. It is seen from

the figure that, for large distances compared with the absorption length of

the medium, the decay of the energy density is nearly exponential with an

apparent attenuation coefficient different from both the extinctions

coefficient and the absorption coefficient. In the figure, b is the true

absorption coefficient, b is the apparent attenuation coefficient measured

from the slope of the curve. It can be seen that, for strong scattering

(Bo>0.5), the apparent attenuation is much bigger than the absorption

coefficient but much smaller than the extinction coefficient (for Bo = 0.9, b

4.5b - 0.45 nie). For weak scattering (Bo<0.5), the influence of scattering

to the apparent attenuation is less appreciable. When Bo - 0.5, b - 1.62b.

On the other hand, for small absorption distance (Dal), the shape of E(r)

curve varies drastically depending on the values of Bo, which provides the

. * * .- o°. ,

. . . . . . . . . . . . . . . . .. . . .
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basis for the separation of scattering effect and the absorption effect. Fig.

3.8 in a similar way shows the influence of absorption on the E(r) curve of a

constant scattering medium.

In order to compare the relative contributions of the diffuse term and

the coherent term, we plot them on Fig. 3.9 and Fig. 3.10 with the distance

normalized by the extinction length Le and scattering length L. respectively.

Now, we will derive the radial energy flux density Jr(r). We know the

energy conservation relation (see Ishimaru 1978, (7.28))

p
71a 1(3.23)

div J(r) - - I(r,)dQ + f W(r,Q)dQ, (2
-- 471 - 4%

where J(r) is the energy flux density vector, C is the wave velocity and

W(r,Q) is the source intensity. For isotopic scattering in the source free

region

div J(r) = raE(r). (3.24)

In view of the spherical symmetry, there is no transverse component of J(r),

therefore (3.24) becomes

div J(r) --- .- , (r2Jr) = - viaE(r) . (3.25) .

Then

Tla r Ina -.-

Jr " f E(r)r 2 dr - -'. f E(r)r 2 dr (3.26)
o r

I

Normalizing Jr by the homogeneous case, we get

Jnr(r) = 47r 2Jr(r) a f 4nr2 E(r)dr = Ta En(r)dr . (3.27)
r r

:;::!:I

.I .. -

.. . .
.. . . . . 5~4* * * . *. . . . .. .
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Substituting (3.22) into (3.27) yields

Jnr(r) = 4ir2 Jr(r)

Pd 1 De
(I-Bo){-(De +---)exp(doDe) + f f(C,Bo)(l- -)exp(-De/&)d& (3.28)

0 0 0

Fig. 3.11 and 3.12 give some numerical results with the distance normalized by

the extinction length and by the absorption length respectively, together with

the results for the forward scattering approximation (see next section). It

can be seen that the radial net flux is always smaller than the source energy

Eo . However, the radial energy flux is difficult to measure in the practice

of seismology. The reason is the difficulty of separating the inward and

outward energy flow. Nevertheless, the comparison between E(r) and Jr(r)

helps us understand the multiple scattering process.

. . . . . . . . . .. . . . . . . . . . . . . . . . . . . .
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4. STRONG FORWARD SCATTERING: THE CASE OF LARGE SCALE INHOMOGENEITIES

From the analysis of coda generations for local earthquakes, we conclude

that the lithosphere in tectonically active regions may be rich in small scale

heterogeneities (less than 1 km) (paper II). On the other hand, by measuring

the phase and amplitude fluctuations in large seismic arrays as LASA and

NORSAR, large scale velocity inhomogeneities (10-20 kin) underneath the arrays

were revealed (Aki 1973, Capon 1974, Berteusson et al. 1975). Therefore, the

lithosphere may have multi-scale inhomogeneities. For short period seismic S
waves (around 1 Hz), the scattering by the small scale heterogeneities may be

in the Rayleigh and Mie scattering region. From the elastic scattering

pattern (paper 1, 1I), we may approximately use the isotropic scattering

approximation. However, for the large scale velocity inhomogeneities, the

forward scattering is dominant. The energy density distribution with distance

will be quite different from the case of isotropic scattering. Since most of

the scattered energy is concentrated in the forward direction within a small

cone, the focussing and defocussing, diffraction interference phenomena become

important. Most of the scattered energy arrives at the receiver point with

much shorter travel paths, so that the energy delay due to scattering is much

less severe than the case of isotropic scattering. From a reasoning similar

to that in Fig. 3.5, we can see that, the normalized energy density decay
p

curve will not have a peak of value greater than I. Because the inward

scattered energy is much less than the outward scattered energy, the energy

density which is Jr+ + Jr', where Jr+ and Jr- is the outward and inward radial p

energy flux respectively, will have no too much difference from the net

energy flux Jr - Jr+-Jr ". In the following, let us examine what can be

obtained from the theory available in transport theory.

I

.. . °.
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Fante (1973) has solved the. transport equation under the forward

scattering approximation, and Ishimaru (1978, ch. 13) has a lucid derivation

and discussion on it. Here we only draw some main threads for understanding.

Since

dI(r,Q)

- grad I(r,Q), (4.1)
dt

where dt is the length of an elementary segment in Q direction (Fig. 3.1), -the

transport equation (3.1) can be written as

A * * A *

Qegradl(r,Q) - - YeI(r,Q)+j1s f D(Q,Qo)I(r,Qo)dQo+w(r,Q) . (4.2)

Because the scattered energy is mostly confined within a small angle in the

forward direction, we choose the z-axis of the cartesian coordinates as this

direction, and approximate (4.2) through the following steps.
A A A A

Q=x"-my+nz , (4.3)

where x, y and z are the unit vectors in x, y and z-axis respectively, and

l,m,n, the corresponding direction cosines. In the spherical coordinate

system with Z-axLs as its polar axis (Fig. 4.1)

1 = sLnecoso, m - sinesind, n = cose (4.4)

Because the angle with z-axis e is always small, we have approximations

n - cose -

dQ " ndO - dldm = da,a a
f dO - dl dm - f ds,

Q- grad -(,) z(~~)s-t(~~) 45

-a-~

AoA
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whereA aa

r - xx+yy+zz - . + ZZ,

- lx4-my, V t- X y .(4.6)

Note that 3 is not a unit vector. Because eis a small angle, the magnitude

* of a is much smaller than 1.

By these approximations (4.2) becomes

W-* I(Z,e,!) + sevtl(z,e,!)

Tin
- -r.I(z,p,s)+--ff D(s-s')I(z,e,!')ds'+W(z,e,s) .(4.7)

here D(0,90) is assumed only as a function of -. Since most of the energy

is confined within a small angle with Z-aXis, the integration limits for 1 and

a are extended to ±~without introducing any significant change.

Again'(4.7) ian be solved by the Fourier transform method (Fante 1973,

Ishmarz 1978, ch. 13), the general solution for W(z,E,3) -0 is

I~z,2,s f dk f dS exp(-ikee-is-3 )I0 (k,g+ z)K(zkg) ,(4.8)

where

Io(k,S) -ff 10(p,s)exp(ikue+ia-S)dpd3 (4.9)

is the double Fourier transform of the incident intensty Io(E,.!) at z-0, and

z B0
K(z,k,%) -exp{ f n [ 1 D(3+t(z-z'))Jdz') (4.10)

0
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where

D . ff D(s)exp(is.1 )ds .(4.11)

There is no general explicit expression for (4.8) for a general

scattering directivity D(3). If we approximate the strong forward scattering

pattern by a Gaussian function,

D(s) -4Cexp(-Ca 2) (4.12)

where C is a parameter proportional to (1t0/X)
2 , and I, is correlation length

of the random miedium, X is the wavelength, substituting into (4.11) and (4.10)

yields

22

K(z,k,q) -exp{ 1 elBoexp(-e)Idz') (4.14)
04.

Since most of the'energy is confined within a small cone along Z-aXis, We

consider the case of a plane incident wave

Io(fl,.) - I06(s) ,(4.15)

10 (k,j,) -(2,C)2106(k). (4.16)

From (4.8) we have

I(a,e,!) - - f dk f dq exp(-Lk 3--)(~x[-lzTs x( )].(4.17)
72;)2 f4&

* When the scattering distance is large, i.e. 71,z>>l, the main contributions to

* the integral in (4.17) come from the integrands with small q's. We can set

e xp(Z)-I (4.18)

* Therefore

7,n- exp[-nz -Lf . (4.19)

*. In * *.
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(z,p)- J(z,p) - f I(z,p,s)ds - Ioe-laz . (4.20)

We see that, under forward scattering approximation, the energy density decay

with distance is only due to the absorption. That is because, in the

approximation, we neglect the backscattering and the path length differences

between the direct path and the multiple scattering paths by letting cose'l.

In Fig. 3.11 and Fig. 3.12 we plot the energy flux J(r) of strong forward

scattering vs. that of the isotropic scattering. If we consider the

lengthening of travel paths by multiple forward scattering, the decay curve

could be somewhere between these two extremes.

(4.19) gives the angle distribution of intensities. The incident wave

has only intensity in z-direction, after scattering by the medium, the

Intensities with different directions have a Gaussian distribution and the

width of the angle distribution broadens with distance. The loss due to the

scattering of energy to other directions is compensated by the gain of

scattered energy from other directions. Therefore there is no energy loss

except absorption. However, in order to calculate the real energy

attenuation, we have to take the backscattered energy into account. Wu

(1982a, see appendix C ) uses a simple renormalization procedure and sums

up all the energy scattered into the back half space as the energy loss. This

procedure is similar to DeWolf's "Cumulative Forward-Scatter

Single-Backscatter Approximation" in calculating the backscattering strength

(DeWolf 1971). Since the backscattered energy is much smaller than the

forward scattered energy, the second backacattered energy (from the backward

direction into the forward direction) is one order smaller than the single

backscattered energy. Therefore the single backacattering loss with the

renormalization of the total forward energy could be a reasonable

approximation of the scattering attenuation for the harmonic wave field.

S. ..
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From the above analysis, in the case of strong forward scattering due to

large scale inhomogeneities, the shape of the energy density decay curve is

insensitive to the medium albedo Bo and the separation of scattering

attenuation from absorption becomes more difficult. However, because the

scattering loss is much smaller than the isotropic case, we can have some

constraint on the possible scattering attenuation from the strength of

inhomogeneities. The shape of the seismogram evelope in time domain can also

give constraints on the possible values of albedo Bo . We will discuss this

later in this paper.

...................... ..... ...... ....... ~.. . .- . .. .- . . .- . . . . . .
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5. SEISMIC WAVE SCATTERING AND ATTENUATION IN HINDU KUSH REGION

In this section we will calculate the energy density distribution with

travel distances for the small earthquakes in the Hindu Kush region. The data

used are from the digital recordings from two stations in that area. Between

11 June and 13 July, 1977, 11 smoked paper recorders and 4 digital event

detector recorders were operated around the Hindu Kush Mountains of

Northeastern Afghanistan. The organization and operation of the field work as

well as the seismicity and tectonics of that region are described by Roecker

(1981), Chatelain et al. (1980) and Roecker et al. (1982). Fig. 5.1 is the

map view of the earthquake distribut'on and the station locations. In Fig.

5.2, the events are divided into groups with 50 km depth intervals. The

C 7)
digital numbered events were recorded digitallymagnetic tapes, which have

been used by Roecker et al. (1982) to calculate the coda Q and S wave Q in

that region using Aki's single station methods. Table 5.1 lists these events.

We will use some of those events to calculate the energy distribution along

the travel path.

The digital event recorders were of the event detector type (for details

see Prothero 1976). When the received signal exceeded the pre-set level the

recorders were triggered to record the event on magnetic tapes. The buffer of

the instruments also allowed us to record one second data proceeding the

triggering signal. Each digital station had four seismometers, three

components with high gain and a low-gain vertical component. The natural

period of the seismometers was 4 seconds. The preamplifier had a gain 20 db

or 40 db (low gain or high gain). The amplifier had a gain 52 db or 58 db,

with a 3 pole, low-pass, antialiasing filter having a corner frequency of 32

hz. The response of the whole system is shown in Fig. 5.3. After

amplification the signal was digitized at 128 samples per second, multiplexed

. . . . . . .-. . . . . .
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and then recorded if the recorder was triggered. The events recorded usually

were greater than magnitude 3, with the exception of a few close earthquakes,

due the pre-set trigger level.

Because there are only a few stations, it is difficult to get the energy

density-distance relation from a single event. We will use a single station

method. The seismograms of different events with different distances from the

station will be Fourier-transformed to get the spectral density of the energy

density E(r) for the corresponding source-sensor distances. In order to have

a common source factor for all the events, we use the coda spectral density of

these events as the reference levels. From observations, it is generally

acknowledged that the coda level, at the travel time greater than twice the

S wave travel time, has a very stable relation with the source energy and does

not change with the locationi of the events. This can be explained by the

theory of coda generation in which the coda waves are assumed to be fbrmed by

the backscattered S waves from the heterogeneities in the local region of the

lithosphere (AkL 1969, Aki and Chouet 1975). A received signal can be

considered as a product of three factors:

received signal - source factor x path factor x station factor. (5.1)

Because the coda energy at a specified time interval is assumed to be the sum

of backscattered wave energy from the heterogeneities in all the directions,

therefore the path factor has been averaged over all the directions, which is

much more stable than the path factor of the direct path.

In the calculations, we took the reference coda travel time as to - 70

sec. However, for the very close events, some seismograms are shorter than 70

sec, while for the distant events, 70 sec is smaller than twice the S wave

travel times. We need to do extrapolations. The guideline for choosing coda

time tc is to have it greater than twice the S travel time and as close as

..............................................................................
.............................................................................



36.

possible to 70 sec. In order to convert the coda level of each tc to the

reference level of to - 70 sec, we use the empirical averaged coda envelope

decay for each frequency obtained by Roecker (1982) for this region. When

tW2t., where t8 is the S travel time, the coda envelope decay can be fitted

by 1•

P(w1t) - Po(w) exp(-btt), (5.2)
t2

where P(wit) is the coda power spectral density at frequency w, at time t,

Po(W) is a constant, bt is the attenuation rate and

bt - Pb, (5.3)

where b is the attenuation coefficient and P is S wave velocity. For the

single backscattering model, Po(w) is found to be (Aki and Chouet 1975) 0

2g(it)S(w)

PO(W) - , (5.4)

where g(ic) is the backscattering coefficient and S(w) is the source power. ..

For our purpose, it is not necessary to specify Po(w), we need only use the

empirical relation (5.2). If we set t - to as the reference coda travel time,

then
1

P(wlto) - PO(W) - exp(-btto) . (5.5)
t0

2

Suppose we measure the coda power P(wItc) at time tc, the correction for

reducing P(wltc) to P(wlto) is then

tc
p(wlto) p(Wltc) (_)2 exp[-bt(to-tc)1 . (5.6)

to •

We can also use PO(W) as the reference level:

PO(W) - P(Wmt o ) * to 2 exp(btto) . (5.7)

In Fig. 5.4, the solid line is the averaged attenuation-frequency relation

obtained by Roecker, the dotted line is the smoothed version being used for

calculations. • .S -°
......................

........................................... :.
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We choose two stations PEN and CHS (Fig. 5.1), because there were many

close events for both stations to confine the energy-distance curves. In

Table 5.2 and 5.3 the events used for calculations are listed in the order of

distances. The events were located using the arrival times on smoked paper

records.

To calculate the spectral density, we use the fast Fourier transform

algorithm, and average the spectral densities over the specified bandwidths.

In order to compare with the previous results obtained using the filtering

method by other authors, we take the frequencies as octave and with bandwidths

2/3 of the central frequencies. Table 5.4 lists the 14 central frequencies

and their corresponding attenuation values. We use a 32 second window for the

S wave Fourier transforms. Fig. 5.5 shows some examples of the seismograms at

station PEN for different hypocenter distances, from which we can see that the

32 second window will include most of the S wave energy. In the figure, for

each event first gram is the low gain vertical (Z) component, the rest are

high gin Z, E-W, and N-S components respectively. In order to avoid the

Gibbs phenomena of the rectangular window, we use a 1 second cosine taper for

both edges of the window. For the reference coda spectrum, we use an 8 second

Hamming window for Fourier transforms.

Fig. 5.6 shows the obtained 4itr 2 E(r) curves from the station PEN.

Totally 31 events are used and the events are grouped according to their

distances. From left to right, the curves are of Z, EW and NS components. In

the upper part, they are for f = 0.25, 0.5 and 1 kz; in the middle, f - 1.5-8

hz; in the bottom, f - 12-45 hz. Except for the low frequencies f~l hz, the

curves can almost be fitted with straight lines. We calculated the apparent

attenuations for different frequencies for the EW components and listed in the

Table 5.5.

-... .......... - -
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Because of the fluctuations of the measured curves and the insensitivity

to albedo B. when Bo<0.5, we can not determine exactly the values of Bo for

each frequency. However, we can get some constraints on the Bo values from

the comparison between the measured and the theoretical curves.

Since Aki introduced the single station method using S-coda ratios to

measure the apparent attenuations of short period body waves (Aki, 1980a),

various attenuation mechanisms have been examined to interpret the

observations, especially the frequency dependence of the apparent

attenuations. After discussing different attenuation mechanisms, Aki proposed

two most promising candidates: thermoelasticity and scattering (Aki 1980a).

However, it seems only the scattering mechanism survived in the literature.

Dainty (1981) proposed a scattering model with a constat Q medium and

arttributed the observed attenuation as the sum of the intrinsic attenuations

and the single scattering coefficient. Assuming an intrinsic Qi= 2 0 0 0, he

matched the observed data in Kanto, Japan by Aki (1980a) well with the

theoretical calculations. Let us test this model usign our theoretical

calculatuions and the data in Hindu-Kush. Fig. 5.7 gives the possible energy

density distribution curves for different frequencies if we assume the

constant Q model (Qi - 2000) and use the values of apparent Q in Kanto region

obtained by Aki. Due to the low intrinsic attenuation at low frequencies, the

medium albedo Bo will be very high, if we attribute the observed apparent

attenuations mainly to scattering. However, from Fig. 5.7 and Fig. 3.6, we

see that the En(r) curves for Bo 1 are o' arch shape, only approach

approximately exponential curves when distances are much greater than the

extinction length Le. Compare the prediction of Fig. 5.7 with Fig. 5.6, they

do not agree in general. More detailed comparison is shown in Fig. 5.8 for

the Hindu-Kush data. The apparent attenuations b obtained from the curves

in Fig. 5.6 are listed in Table 5.5. For the highest frequency f = 45 hz,
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b - 0.03/km. If we assume this is totally due to the intrinsic absorption,

the equivalent Qi will be around 2500. From this Qi, we can obtain the

approximate Bo, do, and Le for each frequency (also listed in Table 5.5) based

on the measured b values. In Fig. 5.8 the prediction of the constant Q model

with BO - 0.9 is compared with the measured data of f - 1.5 hz and 2 hz.

There is no match between them. Comparing with other theoretical curves of

different Bo's, we found that the observations may be fitted with curves of

B040.5. Since the fluctuation in the data and the insensitivity of the curve

to B. for B0(0.5, we can not determine the Bo value precisely. For the

frequencies above 1.5 hz, we can have the similar conclusions (see Fig. 5.6).

Therefore, the constant Qi model may not represent the real medium in

Hindu-Kush region. Because the apparent attenuations and their frequency

dependence for some tectonically. active regions (e.g. California, Kanto region

of Japan, etc.) are alike, we might expect that these analyses would be

applicable to that region. However, we need to apply the method to other

regions before we can draw any conclusions.

More careful studies are needed for the energy distribution curves of low

frequencies (fUl hz). The curves at these frequencies (Fig. 3.6) have the

interesting arch shapes, which might indicate the existence of strong

scattering at these frequencies. However, these curves are more fluctuating,

which may be caused by the interference, and therefore are less reliable.

Another consideration is the influence of surface waves and guided waves

(higher mode Rayleigh and Love waves), which is stronger at low frequencies.

Fig. 5.9 shows two examples of seismograms of events having distances about

100 km from the station (A34: r - 104 kin, depth - 4.57 kin; A08: r - 124 kin,

depth 16.27 kin). The strong low frequency components following immediately

the S arrivals are apparent. This may evidence the strong multiple scattering
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t these low frequencies. Another positive indicatqof multiple scattering is

emerged when we compare with the decay curves of direct S amplitudes. In Fig.

5.10 these decay curves are shown for f - 0.25, 0.5, and I hz, the S wave

power spectra are calculated by Fourier transform using a 4 second Hamming

window. These curves are more regular and are not of arch shape. That is

because when the window for S wave is very narrow, the multiple-scattered

waves, which have longer travel times, are not included. In 5.11 we also plot

the calculated apparent attenuations from both the direct S and the total S

decay curves for comparisons (the smoothed coda attenuation curve is also

plotted). Above 1.5 hz, the attenuation of the total S wave is smaller than

that of the direct S wave. This may be due to the inclusion of part of the

scattered energy in the former case. However, the differences between these

two cases are small in general, which further suggest that, the scattering is

not the dominant factor in the apparent attenuation for these frequencies.

Again a noticeable different behavior at low frequencis (fUl.5 hz) is

presented. For these frequencies, the attenuations of direct S waves are

smaller than that of the total S waves. Note that the attenuations of the

total S waves are estimated from only the later part of the energy

distribution curves.

If we take the energy curves for fSl hz as controlled by multiple

scattering. A rough estimation by comparing with the theoretical curves (Fig.

3.6) can be made about the medium scattering parameters. For the vertical

component, we have

f Le(km) Bo  Ls(km) La(km) Qi(equivalent)

0.25 33.3 0.99 33.7 3330 1494

0.5 28.3 0.99 28.6 2830 2540

1 50 0.9 56 500 898
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In the case of the EW component,

f Le(km) Bo  Ls(km) La(km) Qj(equivalent)

0.25 25 0.99 25.3 2500 1122

0.5 26.7 0.99 26.9 2670 2396

1 40 0.90 44 400 718

It is interesting to note that, at 0.25 and 0.5 hz, the estimated Qi are

close to the proposed intrinsic Q for the constant Q model. Although this may

be only a numerical coincidence, we would like to report it here for further

study.

Fig. 5.12 shows the 4 r E(r) curves obtained from station CHS. The.

events used are listed in Table 5.3. The general conclusions drawn from the

analysis of the results of station PEN hold true also for CHS.

. -. . .. . . . . . . . . .

.. .
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6. DIFFUSION APPROXIMATION IN TIME DOMAIN, THE CONSTRAINT OF SEISMOGRAM
ENVELOPE ON THE SCATTERING STRENGTH

Another approach for studying the scattering and attenuation of seismic S

waves is to formulate the problem of energy transfer in the time domain and

compare the envelopes of seismograms with the theoretical predictions.

However, from the author's knowledge, the complete solution of energy transfer

in time domain is not available at present. Nevertheless, there are

approximate solutions for the weak scattering and the strong scattering. In

the weak scattering case, when the propagation distance is smaller than the

scattering mean free path, the single scattering approximation can be used.

Aki and Chouet (1975) developed a single backscattering model, Sato (1977)

derived the formulation for isotropic scattering and discussed subsequently

the influence of non-isotropic scattering (Sato 1982). In the case of strong

scattering, when the scattering coefficient is much greater than the

absorption coefficient (B,>>0.5), and the propagation distance is much greater .

than the scattering mean free path, the diffusion approximation can be used to

approximate the envelope variation in time domain. In the following, we

discuss the diffusion approximation and seek the constraint of the observed

envelopes on the medium scattering properties.

When the scattering mean free path is much shorter than the absorption

length in the medium, the energy transfer can be approximated by a diffusion

equation (see Morse and Feshbach, 1953, §2.4)

- P(r,t) - dV2 P(r,t) - btP(r,t) + q(t), (6.1)

where P(r,t) is the power at distance r and time t; bt is Lhe absorption rate

bt - bc,

where b is the absorption coefficient and c is the wave velocity; q(t) is the

source; and d is the dLffusivity

*.*... -1.*:. . .....-. ,..,.,....,......,.....,,......,.....,.................. .... .,..........,,
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c

d - - , (6.3)
311d

where 'nd is the effective extinction coefficient for the diffusion process.

In the case of isotropic scattering nd - e" For non-isotropic scattering, in

the case of discrete random media

lid = na + nam, (6.4)

where n is the number density of the scatterers, aa is the absorption

cross-section of the scatterers, am is defined by

am f ad(Q)(l - cose)dQ , (6.5)
4%

where ad(Q) is the differential scattering cross-section (2.15), 0 is the

scatterng angle. am is called the "momentum transfer cross section" by Morse

and Feshbach (1953, p. 188). The solution of (6.1) for a point impulsive

source is (Morse and Feshbach, 1953)

0, t<O

P(r,t) - I exp[-(r 2 /4dt)-btt], t>O . (6.6)
(4:dt)

3/2

Ishimaru (1978) formulated the problem using the equations for the

two-frequency mutual coherency functnion and derived the two-frequency

equation of transfer. Under the diffusion approximation, a solution similar

to (6.6) for a point impulsive source was obtained

r
P(r,t) exp[-(r /4dt)-btt], (6.7)

t4nd t3 /
2

where d is the same as (6.3), but with lid defined by

lid w nam (6.8)

instead of (6.4). However, since ea is assumed very small, there will be no

big difference between (6.8) and (6.4) except for very strong forward

scattering. In the following we will discuss the case of um>Oa, therefore

. . .". o..
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(6.8) will be used, which can be written as

l'd - '1s (1-7), (6.9)

where 7s is the scattering coefficient, and y is the mean scattering angle

cosine

--- f ad(Q)cosO d
as 4ic

- f D(Q)cosO dQ, (6.10)
4% 4%

where D(Q) is the scattering directivity (2.11).

Note that, the quantity

sy" =-- f d f D(e *)cose sLne de, (6.11)
4% o 0

where 0, * consistute the spherical coordinates with the polar axis in the

incident direction, is the net scattering power flux in the incident

direction. This part of the scattered power will join the incident power flow,

and does not contribute to the diffusion process. In the case of isotropic

scattering, y - 0, the net scattering power flow in the incident direction is

zero, so that 71d - is" In the case of strong backacattering, -1<7<0, so

nd>71s. Vice versa, for the case of strong forward scattering, O<<l, nd<ns.

From (6.6), we know there is a peak in the power flow curve, which is

approximately at the maximum of the exponent of the exponential term, i.e. at

tm r =to - Vl-Y"?- to - - :,
2 Ts 2 71a

/4 db t

V3 - Bo
- to -/ ,V- (6.12)

2 ly I-B o

where

to r/c, (6.13)

-.-.-. . *
. . . . . . . . . . . . . . . . . ..,. .... .... .... ...,, ... .. .. . .,- .., , .., ., ... , , ..- .-. -.,. -,,. .., -.. , , , .,. . . .. - , .,. .. , ,
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and

Ta l/bt, Ts - I/VsC , (6.14)

are the absorption time and the scattering mean free time respectively.

Therefore, the arrival time of the peak of the power flow is proportional to

the square root of the ratio between the absorption time and the scattering

mean free time. For strong forward scattering, /l-y < 1, the power peak will

arrive earlier than the case of isotropic scattering; in the case of strong

backscattering, Y'1-7 > 1, the peak will arrive later.

Note that, under diffusion approximation, the apparent attenuation, when

t Ts>> t 2 , is approaching to the absorption coefficient Ia; while in the

exact solution in frequency domain (3.16) it approaches --Te or a + dsT)s"

The multiplier do or d3 varies depending on Bo.. Only in the case of Bo+l, the

apparent attenuation approaches na"

From the peak time we can derive the ratio ld/'a after doing correction

of t while measuring apparent attenuation will determine approximately a..i

Therefore the shape of the envelope provides all the parameters of diffusion

scattering.

If we assume a constant Q model, from table 5.5, we have Bo> 0 .79 for f46

hz. Therefore, the diffusion approximation could be applied to the wave

energy transfer for frequencies below 6 hz. Based on the estimated scattering

parameters in Table 5.5, we list in Table 6.1 the predicted arrival times of

peak power for different frequencies. Except for the strong forward

scattering case, the peak arrival times have a large delay up to several times

of the direct travel time. This contradicts the observations on earthquake

seismograms or explosion-source seismograms on the earth. The travel time

fluctuations for local earthquakes are usually less than 10-20% and the direct

S waves can be easily recognized for these frequencies in general. The

.........................................
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observed seismograms are not of diffusion type in the frequency range 1-10 hz.

Fig. 6.1 shows the diffusion type envelope curves according to (6.6) at f - 2

ha for different scattering patterns (the envelopes should be symmetric about

3/2
the time axis). Since we neglected the t"  term in deriving (6.12), the

peak times in Fig. 6.1 are different from the predictions in Table 6.1.

However, the envelopes exhibit the typical diffusion characteristics. These

diffusion type envelopes have been observed on the moonquake seismograms and

on the seismograms of model experiments in laboratories. In Fig. 6.2, the

3-component seismograms for two events on the moon are shown (the figures are

from Latham et al. 1971). The first event (upper seismograms) is believed to

be a meteoroid impact, corresponding to the case of shallow source; the second

event is considered to be a deep moonquake (below the strong scattering

layer). These diffusion type seismograms are due to the existence of the high

Q, strong scattering layer below the moon surface (Dainty et al., 1974, Dainty

and Toksoz, 1981). Fig. 6.3 shows the seismograms from the model experiment

in the laboratory (Dainty et al., 1974). (a) is the seismogram with a

homogeneous plate as the propagation medium; while (b) shows the diffusion

type seismogram for the case when the plate has many grooves as scatterers.

In order to compare with Fig. 6.1, we select two events A06 (Depth 103

km) and A15 (depth 118 km), which have distances around 200 km from station

PEN and CHS. From Fig. 3.9 we know that, the diffuse term will dominate after

the travel distance exceeds twice the extinction distance for Bo = 0.9.

Therefore the seismograms for these two events should be of diffusion type, if

the parameters in Table 6.1 are true, i.e. the constant Q model is true. Fig.

6.4 and 6.5 show the filtered seismograms for these two events at different

stations. The digital filter is a six pole, zero-phase, Butterworth filter,

the central frequencies are 0.375, 0.75, 1.5, 3, 6, 12, 24, and 46 hz, the
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bandwidth is 2/3 of the central frequency for each band (see Roecker, 1982).

From these figures, we do not see the diffusion type seismograms at low

frequencies. In Fig. 6.6 we plot the envelope decay curves for event A15 as

an example. The power decay curves are calculated by the moving window

spectral analysis with an 8 second Hamming window and at a 5 second interval.

On the left are the vertical components, right, the EW components. These

envelope curves are typical for the events in this region (see Roecker 1982).

They are not of diffusion type except for some very high frequency components

(f>20 hz, we will discuss this later). In fact these curves fit the single

isotropic model fairly well. The energy density E(r,t) of the isotropically

scattered body waves at time t and at distance r from a point source can be

expressed as (Sato 1977)

nasW o  t
E(r,t) - (-) (6.1-)

42 ts

where ts is the direct wave (here S wave) travel time, n, the number density

and cs the scattering cross-section of the scatterers. Wo is the source

factor, and
() =-n [(6.16)

The time function K(t/ts ) is a pure geometric spreading factor for the single

isotropic scattering model, which is plotted in Fig. 6.7 for the distance of

event AI5 to CHS (r-221.85 km). Fig. 6.8 shows the power decay curves after

making the corresponding geometric spreading correction, i.e. dividing the

curves in Fig. 6.6 by K(t/ts). We can see that, after this geometric

correction, the power decay curves are fairly linear, which is of exponential

decay due to attenuation.

.7.. . . . . . . . . . . . .. V*. .*. .-. .. V

. . . . . . . . . . . . . . . . . . V * * ..... ,. .. *
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To compare with Fig. 6.1, we need to examine the case of strong forward

scatternig more carefully. The curve of y-0.5 is calculated by assuming the

same scattering coefficient is as the Isotropic scattering case. Because more

energy Is concentrated in the forward direction, the effective scattering

coefficient for diffusion Td becomes smaller than TI (see (6.9)). In our case

we estimated I, from the apparent attenuation measurement in frequency domain

(section 5). Since we calculated the power spectral densities for the total S

waves, the net scattering power flux (6.11) is included, so that the forward

scattering power flux does not contribute to the apparent attenuation.

Therefore, the estimated scattering coefficient is closer to rd than to ns, if

we consider the apparent attenuatuion is mainly due to the scattering loss.

By this consideration, the curve for strong forward scattering in Fig. 6.1

should have a shape close to the isotropic case with a 'Id closer to, but a

a n, greater than the isotropic case. Secondly, if the peak of the power flow

is near the direct arrival time, the more elaborated diffusion formulae should

be appealed (Ishimaru 1978), which will incorporate the direct travel time

into the formulation. At any rate, if the apparent attenuation obtained in

section 5 is taken as mainly from scattering loss, the envelope curve should

be similar to a diffusion type curve of isotropic scattering.

From above comparison and analysis, combining with the results obtained

in section 5, we can conclude that, in the frequency range 1.5-20 hz, the

scattering is not the dominant factor of the measured apparent attenuation.

In other words, the scattering coefficients is smaller than the absorption

coefficients at these frequencies in the lithosphere of this region.

More careful study is also needed for the case of frequencies higher than

20 ha. From Fig. 6.4, 6.5 we notice that, at these high frequencies the

seismograms become spindle-shaped as pointed out by Tsujura and Aki (see Aki

. . . .. . .. ~ ~ ~ ~ ~ o.. ..
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1980b). These are of diffusion type. For some stations, the P and S phase

can no longer be clearly separated, which means also strong scattering and

conversion. Since the attenuation coefficients are high at these frequencies,

the scattering coefficients must be also high. This strong scattering for

high frequencies may be caused by the near surface very small scale

heterogeneities. Regarding Fig. 6.6, 6.8, we can find that the decay curves

of m and n band (f-32 and 45 hz) have flat tops, different from the other

bands.

The time domain analysis has the advantage of easy comparison with the

data, because each seismogram is one experiment, unlike the energy density

distribution curve in frequency domain, which need many events covering a

distance range. However, in order to perform more complete analysis, we need

to develop-more accurate theory and model. Besides, the shape of the envelope

is also sensitive to the slip direction of the earthquake source, that makes

the analysis more complicated. At any rate, the combinations of time domain

and frequency domain analysis will make the analysis more informative and

reliable.

.I..
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7. SUGGESTION FOR FURTHER STUDIES

It is interesting and beneficial to apply the method to other regions

to see the relative importance of absorption and scattering for different - -

regions. Especially the comparison between the results for the tectonically

stable regions, such as New England area or the central U.S., and that for the

active regions such as the results obtained here for Hindu Kush or that for

California, will give us deeper understanding about scattering and attenuation

as well as more information about the tectonic activities.

Further improvements on the scattering theory and modeling are also

needed, such as the influences of the radiation pattern of the source, the

finite thickness of the lithosphere, the nonisotropicity of the inhomogeneities,

etc. Of course, full treatment of elastic wave scattering in both the frequency

domain and the time domain are highly desired.

S o' [
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Table 3.1. The Diffuse Multipliers do and da

Bo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

do 0.997 0.987 0.969 0.944 0.910 0.866 0.807 0.728 0.611 0.519 0.374

d3  0.97 0.94 0.90 0.86 0.82 0.78 0.72 0.66 0.57 0.49 0.37

L! . . .
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Table -1

DATE ORIGIN LAT LON DEPTH EVENT HAG
TI4E N KIN E MIN (KH) NO.

77 616 1616 55.26 36 31.76 70 16.13 102.26 16 3.9
77 617 8 6 32.45 35 23.30 69 28.05 1.49 18 2.4
77 617 1714 20.46 36 32.89 70 57.20 197.00 19 3.8

- 77 617 1930 38.16 35 43.12 69 40.23 77.98 20 3.7
77 617 22 1 47.14 36 30.00 71 14.24 112.19 21 3.6

l 77 618 528 43.58 34 54.80 69 55.45 1.87 23 2.5
77 618 753 35.31 34 39.56 70 34.71 1.42 24 2.4
77 618 9 3 40.71 34 34.30 72 48.84 340.70 25 5.3
77 618 1150 22.64 36 6.23 69 23.71 131.94 26 3.3
77 618 2320 3.27 35 59.24 70 38.49 112.21 27 3.5
77 620 148 49.52 36 5.63 70 26.43 98.55 28 4.3
77 620 4 5 56.23 36 7.01 70 26.17 105.32 29 4.0
77 620 1156 33.60 36 30.35 70 18.96 215.02 30 3.8
77 620 2335 16.51 35 30.68 69 3.71 2.50 31 3.1
77 621 316 2.84 36 38.92 71 18.30 98.13 32 3.7
77 621 2133 46.80 36 33.34 71 22.42 159.81 33 4.3
77 622 832 21.95 36 35.21 70 53.23 232.49 02 4.1
77 622 1430 58.92 36 10.33 69 19.52 4.57 34 3.9
77 623 934 59.59 36 27.15 71 14.84 136.57 03 3.5
77 623 2054 13.26 36 2.75 70 32.94 1C6.25 04 3.5
77 624 2358 0.19 36 31.68 70 22.24 218.37 05 4.6
77 624 2243 57.24 36 11.90 69 17.27 9.65 35 3.3
77 626 824 11.00 36 18.48 70 55.67 119.35 .36 3.4
77 626- 1833 58.79 36 47.06 71 23.74 155.28 37 3.5
77 627 759 14.12 36 27.88 70 50.11 127.76 3 3.3
77 628 7034 26.75 36 7.26 70 32.94 100.00 39 3.6
77 628 1520 4.70 36 10.48 71 8.95 86.02 40 2.9
77 628 1623 51.79 37 11.54 71 25.61 108.66 41 3.4
77 628 17 3 36.25 35 17.53 69 16.85 8.68 42 2.1
77 629 636 27.30 36 21.49 71 10.14 105.56 43 3.5
77 629 1031 4.37 36 28.76 71 18.43 138.44 44 3.4
77 629 1521 33.18 37 27.39 72 21.65 221.95 45 4.3
77 629 1540 1.48 34 46.64 70 5d.55 2.G4 46 2.5
77 629 16 6 30.59 36 24.00 71 9.33 103.31 06 4.7
77 630 220 47.74 36 29.06 70 26.98 219.25 07 4.1
77 630 338 34-.03 36 37.07 71 17.14 86.83 47 3.5
77 630 1353 29.92 36 17.64 71 11.71 98.83 48 3.4
77 7 1 348 32.15 34 38.56 70 28.55 16.27 08 4.5
77 7 1 1444 10.80 36 28.05 71 6.59 264.91 09 4.9
77 7 1 1627 3.09 36 14.5a 70 19.05 108.83 49 3.0
77 7 2 330 48.81 36 34.45 70 39.80 174.84 50 4.1
77 7 2 2028 19.63 35 13.97 69 25.26 8.32 51 2.2
77 7 2 2111 49.19 35 59.39 70 43.29 93.93 52 3.2
77 7 3 17 0 4.91 36 56.43 71 2.82 76.67 53 3.0
77 7 4 614 15.39 36 32.71 71 21.16 122.09 54 3.5

77 7 4 824 3.03 36 19.90 69 33.71 134.72 55 3.6
77 7 4 1128 47.08 36 26.39 70 12.86 221.59 10 4.6
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77 7 4 2041 5.58 36 11.73 69 26.72 128.00 56 3.3

77 7 4 21 1 56.74 37 31.97 72 0.62 157.19 11 4.7
77 7 5 14 7 12.46 36 29.72 69 47.10 271.19 57 2.9
77 7 6 055 22.50 36 39.45 71 5.04 229.10 58 3.9
77 7 6 1328 56.27 37 4.49 71 34.93 96.33 59 3.4
77 7 6 1659 8.76 36 17.72 69 50.94 9.46 60 3.0
77 7 7 620 43.34 36 25.26 70 37.26 228.86 61 4.1
77 7 8 130 36.15 36 38.20 71 8.46 214.61 12 4.0
77 7 8 525 26.60 36 41.86 71 12.24 230.79 13 4.7 .
77 7 8 7 2 10.28 36 31.90 71 20.23 94.37 62 3.3
77 7 8 950 6.99 36 41.21 71 12.71 233.80 63 3.8
77 7 9 1141 13.94 35 30.46 68 52.81 38.00 64 2.7
77 7 9 1211 40.56 37 36.71 71 45.78 129.68 65 3.7
77 7 9 1616 39.67 36 28.06 71 12.71 143.71 66 3.3
77 710 028 19.08 35 41.93 68 38.41 3.74 67 3.6
77 710 1347 18.52 35 6.83 69 21.09 17.57 69 2.3
77 710 1612 22.07 35 31.28 69 13.05 17.04 70 3.6
77 711 11 2 56.61 36 26.37 71 20.63 104.40 14 3.9
77 711 1224 5.07 36 45.50 71 28.64 188.43 72 3.6
77 711 1651 7.33 36 28.89 71 9.82 118.48 15 4.2
77 712 11 7 59.16 36 32.53 70 58.27 192.49 73 4.3
77 712 1518 28.82 36 12.21 69 15.96 5.57 74 3.8
77 712 1718 2.32 36 16.59 70 40.23 103.88 75 3.7

S - .- - . - .M e--. - -
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Table 5.2

Events Used in the Calculations for PEN in the Order of Distances (31 events)

Reference Record
Point No. Event Distance Depth Hagnitude P travel S travel coda time length
in curve No. (kin) (kin) time (sec.) time (sec.) tc (sec.) (sec.)

I A42 11.12 8.68 2.1 7.29 11.83 44

"NA51 12.10 8.32 2.2 7.54 12.26 31.5 34

2 %4A69 21.52 17.57 2.3 7.54 12.52 31.5 40
A18 22.03 1.49 2.4 9.55 15.62 20.5 18

3 <: 7 0  37.76 17.04 3.6 10.10 17.03 34.1 38
"NA31 39.15 2.5 3.1 11.67 19.42 41.7 40

4 . A64 63.09 38.0 2.7 11.42 19.79 40.4 38
A23 65.15 1.87 2.5 15.04 25.38 42.0 36

5 A67 80.75 3.74 3.6 16.86 28.66 60.7 60

6 - A20 100.16 77.98 3.7 15.94 27.87 54
\A34 104.68 4.57 3.9 19.81 33.91 73.8 82
\A35 107.97 9.65 3.3 19.67 33.76 68
A74 108.33 5.57 3.8 20.16 34.56 80

7 A08 124.88 16.27 4.5 21.06 36.39 158
A68 175..74 24.21 42.61 60

8 (A04 178.52 106.25 3.5 24.78 43.42 78.7 70
<A39 179.28 100.0 3.6 24.9 43.56 64

9 A16 196.42 102.36 3.9 27.16 47.47 84.0 70
A75 197.95 103.88 3.7 27.36 47.83 64

10 i:A06 234.53 103.31 4.7 31.95 55.72 105.9 134
A15 247.35 118.48 4.2 33.41 58.51 107.5 158

11 -A03 259.49 136.57 3.5 34.71 61.11 62
A50 295.83 174.84 4.1 34.46 61.07 90

A0 271.40 221.59 4.6 35.57 63.1 109.4 258
12 05* 278.65 218.87 4.6 36.52 64.75 234

1 A07 279.0 219.25 4.1 36.56 64.82 100.5 76
A73 283.65 192.49 4.3 37.22 65.96 90

13 A02 310.97 232.49 4.1 40.23 71.32 102.1 78
14 <A13* 329.59 230.79 4.7 42.47 75.29 246

NA09* 339.32 264.91 4.9 43.36 77.06 302

15 A25 472.39 340.70 5.3 58.59 104.48 132.2 96

Chigh gain records were clipped, only low gain vertical component

has been used.

- ..--.. -
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Table 5.3

Events Used In the Calculations for CHS in the Order of Distances (22 events)

Point No. Event Distance Depth Magnitude P travel S travel Record Length
in curve No. (km) (km) time (sec.) time (see.) (see.)

I A46 8.47 2.04 2.5 1.55 2.63
2 q-A24 47.77 1.42 2.4 12.85 21.48

NA08 59.54 16.27 4.5 12.98 22.09

0A04 181.43 106.25 3.5 27.08 42.69
3 \ A28 184.08 98.55 4.3 25.55 44.64

\A39 184.42 100.00 3.6 28.59 44.74
A29 189.83 105.32 4.0 26.9 46.03

A06 206.22 103.31 4.7 28.42 49.64
/ A14 211.85 104.40 3.9 29.54 50.88

4 \ A34 220.58 4.57 3.9 34.71 60.37
\ AI5 221.85 118.48 4.2 30.33 53.19
\A74 226.84 5.57 3.8 35.41 61.63
\A16 230.02 102.26 3.9 31.4 54.74
"A66 235.26 143.71 3.3 31.33 56.0

5 q A50 2616.53 174.84 4.1 34.67 60.89
,A73 273.54 192.49 4.3 35.65 61.65
A12 296.55 214.61 4.0 38.17 65.84

6 4 A10 297.63 221.59 4.6 37.62 65.62
A05 298.40 218.87 4.6 39.10 65.58

A02 306.54 232.49 4.1 39.11 66.00
7 A09 323.59 264.91 4.9 41.13 70.13
8 All 352.37 157.19 4.7 46.24 78.24

. . . . . . . . . . . . . . . . . .- .. -
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Table 5.4 The Central frequencies used and the corresponding attenuation
values of coda waves

Band Central Coda Q. Coda Qc Coda bt Coda bt Coda b
no. frequency (observed) (smoothed) (observed) (smoothed) (smoothed) .-

a 0.25 24.0 24.0 6.5 x 10-2 6.5 x 10-2 1.86 x 10-2
b 0.5 47.9 44.2 6.6 7.10 2.03

c 83.2 81.0 7.6 7.76 2.22
d 1.5 89.1 115.4 10.6 8.17 2.33
a 2 107.2 148.3 11.7 8.47 2.42
f 3 125.9 211.3 15.0 8.92 2.55
9 4 190.5 271.6 13.2 9.26 2.64
h 6 281.8 386.8 13.4 9.75 2.78
I 8 446.7 497.2 11.3 10.11 2.89
j 12 707.9 708.2 10.7 10.65 3.04
k 16 933.3 910.2 10.8 11.04 3.16
1 24 1174.9 1296.6 12.8 11.63 3.32
a 32 1698.2 1666.6 11.8 12.06 3.45
n 45 2238.7 2244.0 12.6 12.60 3.60
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Table 5.5 Apparent attenuations for the EW components of station PEN
and the estimated values of seismic aLbedo Bo's, if we

&asum a constant Q(-2500) medium

f r a - w/o Q1 La(km) (for Q-n2500) b ?la/b Bo do Le (kin)
(Q - 2500) (measured)

0.5 0.036 x 10-2 2778 1.00 x 10-2 0.036 -0.96 0.5 50

1 0.072 1389 1.38 0.052 0.95 0.5 36

52 0.144 694 1.50 0.096 0.90 0.6 40

3 0.215 465 1.60 0.134 0.87 0.6 38

*6 0.431 232 2.03 0.212 0.79 0.7 34

L12 0.862 116 2.50 0.345 0.66 0.8 31

24 1.72 58 2.73 0.63 0.37 0.95 35

45 3.23 31 3.00 1.08 0 1 33
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Table 6.1 The Predicted arrival time of the peak power by the diffusion
approximation based on the assumed constant Q(-2500) model and
the estimated parameters in Table 5.5.

Arrival time of peak power
f absorption mean free d(1-7) Albedo tm/t o
(hz) time time (km2 /sec) Bo  Le

Ta (sec.) T (sec.)
y -0.5 0 0.5

0.5 793.7 14.9 60.8 0.96 50 5.20 4.24 3.0

1 396.8 10.8 44.1 0.95 35 4.62 3.77 2.67

2 198.4 12.7 51.9 0.90 40 3.18 2.60 1.84

3 132.9 12.5 51.0 0.87 38 2.74 2.24 1.58

6 66.3 12.3 50.2 0.79 34 2.06 1.68 1.19

:: . . . . o -- . - o ° . . o o . - . . . . . . . . . . . . . ... . . 4 ," ./
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Figure Captions

3.1 The derivation of the transfer equation for the specific intensity

I (r,Q).

3.2 The diffuse multipliers do and d. as functions of Bo (the medium seismic

albedo).

3.3 The behavior of the integrand of the integral for the coherent term.

3.4 The normalized energy density distribution curves 4r 2 E(r), where r is

the propagation distance from the point source. At the top are the

curves of the diffuse term, at the bottom are that of the coherent term;

in the middle are the curves of the sum of the two term. Here De is the

numerical extinction distance, L. - l/ne is the extinction length of the

medium, ne - 71s + na is the extinction coefficient, where n3 and na are

the scattering coefficient and the absorption coefficient respectively.

Bo - 's/(s"1a) is the medium seismic albedo.

3.5 The schematic diagram of a possible multiple scattering path compared

with the direct path. The hatched shell of unit thickness will receive

the energy 4%r2E(r).

3.6 The normalized energy distribution curves 4%r2 E(4) in the

semL-logarithmic scale.

3.7 The energy distribution curves with the numerical absorption distance Da

r/La, where La - Ia is the absorption length of the medium. b is

the apparent attenuation coefficient obtained from the slope of the

curve. Bo is the medium albedo.

3.8 The energy distribution curves with the numerical scattering distance

D s  4/L., where L. 1 l/1s is the scattering length of the medium. Bo is

the medium albedo.

. .- .-* . . .. . o o .. .



66.

3.9 The relative strengths of the diffuse term Ed and the coherent term E.

at different extinction distances D. - r/Le for different medium albedo

Bo., where Le - 1/7e is the extinction length of the medium.

3.10 Same as 3.9, at different scattering distances D. - r/Ls , where L. =- I s

is the medium scattering length.

3.11 The normalized radial energy flux density 4nr2 jr(r) for the isotropic

scatternig case and the strong forward scattering case.

3.12 Same as 3.11. The distance is the numerical absorption distance D3 -

r/La, where La - I/na is the absorption length of the medium.

4.1 The derivation for the case of strong forward scattering approximation.

z is along the forward direction. r is the position vector, p is the m6

position vector in the transverse plan; 9 is the unit vector in the

scattering direction, and a is projection of 9 in the transverse plan.

5.1 Map view of seismicity in the Hindu Kush as determined by Chatelain et 0

al. (1980). The digital stations are indicated by open stars, and the

smoked paper stations by solid diamonds.

5.2 Map view of all the Hindu Kush seismicity on smoked paper stations,

divided into 50 km depth intervals. Locations of events recorded on the

digital recorders are denoted by numbers used in Table 5.1 (from Roecker

1982).

5.3 The overall response of the digital recorder (from Roecker 1981).

5.4 The averaged coda attenuation rate bt = Ob, where 0 is the shear wave

velocity, b is the attenuation coefficient. The solid line is obtained

by Roecker (1982) for the shallow events, and the dotted line is the

smoothed curve used in this paper.

* *1
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5.5 Son seLsmograms for different hypocenter distances at station PEN. A42,

r - 11.12 km, A67, r -8.75 km; A16, r = 196.42 km; A02, r -310.97 km.

5.6 Energy distribution curves 4nr 2E(r) obtained from the data at station

PEN. From left to right: Z, EW and NS components. From top to bottom:

f - 0.25-1 Hz, f - L.5-8 Hz, and f - 12-45 Hz.

5.7 The predLcted 4%r2 E(r) curves by the constant Q (-2000) model for

different frequencies, if the measured apparent attenuation in Kanto,

Japan by AkL (1980a) is assumed as the sum of the absorption coefficient

and the scattering coefficient (Dainty 1981).

5.8 The comparison between the observed 4ir 2E(r) for f - 1.5 and 2 hz at

station PEN in Hindu Kush and the theoretical predictions for different

Bo's. The curve of Bo - 0.9 is the prediction from the constant Q

(-2500) model, which does not match with the observation.

5.9 Examples of seismograms at station PEN (A34:-r - 104 km, depth - 4.57 km;

A08: r - 125 km, depth - 16.27 km), which show strong low frequency

components immediately after the direct S).

5.10 The energy density curves 4-xr 2 E(r) for direct S waves at f - 0.25, 0.5

and 1 Hz for station PEN. The curves are calculated using a 4 sec

Hamming window for the direct S arrivals. Compare to fig. 5.6. No arch

shape appears here.

5.11 Apparent attenuations derived from the slopes of the energy density

curves (Fig. 5.6) for station PEN, together with the average coda

attenuations and the direct S attenuations.

0: for EW component, total S

X: for Z component, total S

A: Z component, direct S (4 sec. window).

*o%*
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Note: For f(lHz, the apparent attenuations are calculated by using only

the last part of the curves (Fig. 5.6).

5.12 The energy density curves 4ir 2 E(r) for station CHS. From left to right:

Z component and EW component. From top to bottom: f - 0.25-1 Hz, f -

1.5-8 Hz, and f - 12-45 Hz.

6.1 The seismogram envelopes of S waves predicted by the diffusion

approximation for the case of f - 2 Hz, Bo - 0.9 (Qi " 2500). y is the

mean scattering angle cosine defined by (6.10).

6.2 The seismograms of moonquakes. The event on the top is supposed to be a

meteoroid impact; the bottom event is believed to be a deep moonquake

(from Latham et a., 1971).

6.3 The seismograms from the model experiment in laboratory (Dainty et al.,

1974).

a) The seismogram with the homogeneous plate.

b) The seismogram when the plate has many grooves as scatterers.

6.4 Zhe band-pass filtered seismograms of A06 (r = 235 km, depth - 103 km)

for the stations CHS, FRA, JOR and PEN. From top to bottom: f - 0.375,

0.75, 1.5, 3, 6, 12, 24, 46 Hz.

6.5 The band-pass filtered seismograms of A15 (r 247 km, depth = 118 km)

for the stations CHS, PEN and JOR. From top to bottom: f - 0.375, 0.75,

1.5, 3, 6, 12, 24, 46 Hz.

6.6 The envelope decay curves of AI5 (r - 247 km, depth - 118 km) for

station PEN. From left to right: Z component and EW component. From

top to bottom: f - 0.25, 0.5 Hz; f - 1-8 Hz; f - 12-45 Hz.

..........
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6.7 The theoretical envelope decay curve for the single isotropic scattering

in a locsless medium according to Sato (1977). The envelope decay is a

pure geometric spreading effect. The distance between the source and

sensor is taken as 247 km (as the case of A15 to PEN).

6.8 The coda decay curves at station PEN for A15 after the geometric

correction. The corrections were done by taking the ratios of the

curves in Fig. 6.6 and that in Fig. 6.7. Note that, the curves for f -

1-20 Hz can be approximately fitted with straight lines, which means

that, the scattering at this frequency range can be approximated by the

single scattering theory.

.- . -

..- ,



70.

Lf

3.1 The derivation of the transfer equation f or the specific intensity
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0.51

0.51

3.2 The diffuse multipliers do and d. as functions of B0 (the medium seismic

albedo).
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3.3 The behavior of the integrand of the integral for the coherent terra.
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3.4 The normalized energy density distribution curves 4%r
2E(r), where r is

the propagation distance from the point source. At the top are the

curves of the diffuse term, at the bottom are that of the coherent term;

in the middle are the curves of the sum of the two term. Here De is the

numerical extinction distance, Le 1 /?)e is the extinction length of the

medium, ie -I + 71a is the extinction coefficient,
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3.5 The schematic diagram of a possible multiple scattering path compared

with the direct path. The hatched shell of unit thickness will receive

the energy 4,rr2E(r).



75.

-4-

P7Ti

1I I4E t
T7

0.5

0411*

L T: .i* 1 1

.9-0

.. ...... 3 4 5 9 10 1

*3.6 The normalized energy distribution curves 4,r2E(4) in the

semi-logarithmic scale.
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Constant b (absorption Coefficient)
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Constant g (Scattering Coefficient

5

.5

.5 I 2.3

DS r/LS

3.8 The energy distribution curves with the numerical scattering distance

D3 4/L., where L. 1 /qs is the scattering length of the medium. Bo is

the medium albedo.
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- 4rr2 Ec(r)

5 47rr 2 Ed (r

B0 =0.95.~ - - - - - - -

0.0

.5-

5

.01

.5 I23
De r/Le

3.9 The relative strengths of the diffuse term Ed and the coherent termE

at different extinction distances D. r/Le for different medium albedo

B0, where Le - 11 is the extinction length of the medium.
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3.10 Same as 3.9, at different scattering distances D8 - / 5,p er

Is the medium scattering length.
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----- Forward Scattering
Isotropic Scattering

0.55

01

.05-

0.01

0.5 1 2 3

3.1.1 The normalized radial energy flux density 4flr2 jr(r) for the isotropic

scattertag case and the strong forward scattering case.
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4w i,()Isotropic Scattering0

.5
All the Forward Scattering

0.l=
0.1

.05-0.

0.95-

.001
.5 1 3

Do r/ L c

3.12 Same as 3.11. The distance is the numerical absorption distance Ds

rIL., where La l/"na is the absorption length of the medium.



82.

r0

S

p •

4.1 The derivation for the case of strong forward scattering approximation.

z is along the forward direction. r is the position vector, p is the

position vector in the transverse plan; 9 is the unit vector in the .

scattering direction, and s is projection of Q in the transverse plan. p

I
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5.3 The overall response of the digital recorder (from Roecker 1981).
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Frequency depedence of the attenuation bt

. . . . ...... .... .

A jz

5.4 The averaged coda attenuation rate bt Ob, where is the shear wave

velocity, b is the attenuation coefficient. The solid line is obtained

by Roecker (1982) for the shallow events, and the dotted line is the

smoothed curve used in this paper.
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5.5 Some seismagtams for different hypocenter d13tanCeg at station PEN. A42,

v 11.12 kin, A67, r 8.75 kcm; A16, r 196.42 kmn; A02, r -310.97 km.
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seow 5.6 Energy distribution curves

*~~~ 1* o S4 2 E(r) obtained rm

the data at station PEN.

From left to right:

1.oh Z, EW and NS componentso

Z~\ From top to bottom:

f -0.25-1 Hz, f -1.5-8 Hz,

N-and f 12-45 Hz.

0.1h

V 1

5.-I 45h \
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Constant Q1: 2000
4vr2 E(r)

2- BO=0.9 L, 78 km Y 1.5 hz)

r(km)

5.7 The predicted 4mr
2
E(r) curves by the constant Q(-2000) model. for

different frequencies, if the measured apparent attenuation in Kanto,

Japan by Aki (1980al is assumed~ as the sum of the absorption coefficient

and the scattering coefficient (Dainty 1981).
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5.9 Examples of seismograms at station PEN (A34: r -104 kcm, depth 4.57 kcm;

A08: r *125 kcm, depth -16.27 kcm), which show strong low frequency

components immediately after the d~irect S).
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5.10 The energy density curves 41r 2 E(r) for direct S vaves at f - 0.25, 0.5

and 1 Hz for station PEN. The curves are calculated using a 4 sec

Hamming window for the direct S arrivals. Compare to fig. 5.6. No arch

shape appears here.

.".
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Coda b (smoothed)

o EW component 32 sec. window
S attenuation xZcmoet

aZcomponent 4sec. window

* .5 1 2 5 10 50 100

5.11 Apparent attenuatiotis derived from the slopes of the energy density

curves (Fig. 5.6) for station PEN, together with the average Coda

attenuations and the direct S attenuations.

0: for EW component, total S

X: for Z component, total S

A: Z component, direct S (4 sec. window).

Note: For fSlHz, the apparent attenuations are calculated by using only

the last part of the curves (Fig. 5.6).
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5.2The energy density curves 4iir2E(r) for station CHS. From left to right:

Z component and EW component. From top to bottom: f 0.25-1 Ii:, f

1.5-8 Ks, and f -12-45 Ha.
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f u2hz, Q: 2500
3 Boa 0.9

2 forward scattering

I isotropic scattering
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*-6.1 The seismogram envelopes of S waves predicted by the diffusion

pproxmain for the case of f -2 Hz, Bo - 09 (Qi 2500). s the

man scattering angle cosine defined by (6.10).7
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* Compressed tim..-csle reords of two of the lunar icismic event-. believed 1o be of natural
orign ftcorded at staion I2L Z is the vertical comiponent seiimomelor: A sand Va~re the horizonital
component smnes. The moonquake. event of 13:09 hr.. May 23. 1970. originated %ithin the

WOne atest activity (At zone). The H-phas is prominent on the scismogramsi fr the horizontat
comnponent shtmoimnr for category At events. This phase is tentatavely idcnuii.d ass the direwt

shea wave arrival. The event of 8:09 hr., April S. 19'0, is Mcimied to he a meteoroid impatt
(category C cewnto.

6.1 The seismoSrams of moonquakee. The event On the top is supposed to bea

meteoroid impact; the bottom event is believed to be a deep moonquake

(from Latham at .. 1971).
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6.3 The seismograms from the model experiment in laboratory (Dainty et al.,

1.974).

a) The seismogram with the homogeneous plate.

b) The seismogram when the plate has many grooves as scatterers.

6.4 The band-pass filtered seismograms of A06 (r -235 kc., depth -103 kmn)

for the stations CR8, "As JOR and PEN. From top to bottom: f -0.375,

0.75, 1.5, 3, 6, 12, 24, 46 Us. -

6.3 The band-pass filtered seismograms of A15 (r -247 kcm, depth -118 kin)

for the stations 018, PENE and JOR. From top to bottom: f -0.375, 0.75,

1.5, 39 6, 12, 24, 46 Hz.
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